Нефть и нефтепродукты
Приборы контроля и лабораторное оборудование для нефтяной и газодобывающей промышленности

С развитием техники повышаются требования к ассортименту и ка­честву нефтей и нефтепродуктов, что, в свою очередь, требует совершен­ствования процессов их производства. Поэтому качества, как товарной нефти, так и продуктов ее переработки, подлежат обязательному контро­лю. Организацию контроля качества невозможно осуществлять без стан­дартов на нефтепродукты и методов их испытания. Задачи стандартизации многообразны. Это и удовлетворение более высоких требований к выпус­каемой продукции технологии транспорта, защита интересов потребителя, также и интересов изготовителя — от необоснованных претензии.

Соблюдение государственных стандартов обязательно для всех предприятий и организаций, причастных к транспорту и хранению нефтей и нефтепродуктов, тогда как другие имеют ограниченную сферу влияния. В этих документах устанавливается перечень формулируемых физико-химических, наиболее важных эксплуатационных свойств, допустимые значения ряда констант, имеющих специфическое назначение и условие использования.

К физико-химическим относятся свойства, характеризующие со­стояние нефти и нефтепродуктов и их состав (например, плотность, вяз­кость, фракционный состав). Эксплуатационные свойства характеризуют полезный эффект от использования нефтепродукта по назначению, опре­деляют область его применения. Некоторые эксплуатационные свойства нефтепродуктов оценивают с помощью нескольких более простых физико-химических свойств. В свою очередь, перечисленные физико-химические свойства можно определить через ряд более простых свойств веществ. Часто на практике нефтепродукты и нефти характеризуются уровнем каче­ства. Оптимальным уровнем считается такой, при котором достигается наиболее полное удовлетворение требований потребителя. Уровень каче­ства зависит от уровня каждого свойства и значимости этого свойства. Количественную характеристику одного или нескольких свойств продукции, составляющих его качество, следует называть показателем качества.

Большинство методов оценки и анализа свойств и качества стан­дартизовано и по назначению. Они подразделяются на приемосдаточные, контрольные, полные, арбитражные и специальные. Приёмосдаточный анализ проводят для установления соответствия произведенного, посту­пившего или отгруженного нефтепродукта показателям качества.

Контрольный анализ проводят в процессе приготовления или хране­ния нефтепродукта. Полный анализ позволяет дать оценку качества по ос­новным эксплуатационным свойствам для партии продукта, отгружаемой с завода, или перед «закладкой» продукта на длительное хранение. Арбит­ражный анализ выполняют на главном предприятии отрасли по данному виду продукции или в нейтральной компетентной лаборатории в случае возникновения разногласия между поставщиком и потребителем. Число контролируемых показателей при этом может быть различным. Специаль­ный анализ проводится по узкой группе нефтепродуктов. Например, опре­деление фракционного состава нефтей, стабильность масел.

Тот или иной метод анализа дает надежные результаты только тогда, когда его проводят в установленных стандартами условиях. Всякое отсту­пление от стандартных методов не допускается, т. к. даже одно и то же свойство для различных нефтепродуктов определяется различными мето­дами. Свойства нефтей и нефтепродуктов многообразны, способны оказы­вать взаимное влияние и требуют всестороннего изучения.

Классификация нефтей.

Нефть и нефтепродукты представляют собой сложную жидкую смесь близкокипящих углеводородов и высокомолекулярных углеводород­ных соединении с гетероатомами кислорода, серы, азота, некоторых ме­таллов и органических кислот. Определить индивидуальный химический состав нефти практически невозможно, поэтому ограничиваются опреде­лением группового химического состава, т.е. отдельных рядов и групп уг­леводородов.

Несмотря на многообразие углеводородов, основными структурны­ми элементами нефти являются углерод и водород, а элементарный состав колеблется в небольших пределах: углерод 83-87%, водород 11-14%. На долю других элементов, объединяемых группой, смолисто-асфальтеновые вещества представляют собой высокомолекулярные органические соеди­нения, содержащие углерод, водород, серу, азот и металлы. К ним относят­ся: нейтральные смолы, растворимые в бензинах; асфальтены, не раство­римые в петролейном эфире, но растворимые в горячем бензоле; карбены, растворимые в сероуглероде; карбониты, ни в чем не растворимые. При сгорании нефти получается зола (сотые доли процента), состоящая из оки­слов кальция, магния, железа, алюминия, кремния, натрия и ванадия. Кста­ти, соединения последнего являются переносчиками кислорода и способ­ствуют активной коррозии.

В нефти можно обнаружить более половины элементов таблицы Менделеева. Элементарный (часто говорят «химический») состав нефти полностью не известен. Уже сейчас обнаружены 425 индивидуальных уг­леводородов, содержащих серу, азот и кислород. Трудность определения состава заключается в том, что выделить из нефти соединения можно пока лишь путем перегонки, при этом состав нефти может значительно изме­ниться в результате различных реакций.

Определить индивидуальный химический состав нефти практически невозможно, поэтому ограничиваются определением группового химиче­ского состава, т.е. отдельных рядов и групп углеводородов. Углеводоро­ды, различающиеся содержанием углерода и водорода в молекуле, а также строением, являются основным компонентом нефти. Углеводороды приня­то разделять на парафиновые (насыщенные алканы), нафтеновые и аро­матические. Преобладание той или иной группы углеводородов придает этим продуктам специфические свойства. В зависимости от преобладания в нефти одного из трех представителей углеводородов (более 50%) нефти именуются метановые, нафтеновые или ароматические. В случае, когда к доминирующему присоединяется другой углеводород в количестве не ме­нее 25%, то им дают комбинированное название, например, метанонафтеновые.

Приведенная выше классификация нефтей по углеводородному со­ставу позволяет дать новое определение нефти: нефть представляет собой раствор чистых углеводородов и гетероатомных органических соединений, т. е. углеводородов, содержащих в молекуле атомы кислорода или азота, или серы. Именно раствор, а не смесь, причем не обычный раствор, а раствор различных соединений друг в друге.

Разделение таких многокомпонентных смесей проводят на части, со­стоящие из углеводородов, близких по составу, которые принято называть фракциями. Нефть и нефтепродукты имеют температуру начала кипения tн.к. и конца кипения tк.к.. ­­- Фракционный состав нефтяной смеси определяет­ся обычно простой перегонкой или ректификацией, а на практике его оп­ределяют стандартным перегонным аппаратом и измеряют в объемных или массовых единицах. Разделение таких сложных смесей, как нефть и кон­денсат, на более простые называют фракционированием. Нефтепродукты и конденсата, получаемые из нефти, являются фракциями, вскипающими в достаточно узких температурных пределах , определяемых техническими условиями. При перегонке нефти, имеющей типичный со­став, можно получить: 31% бензиновых фракций, 10% керосиновых, 51% дизельных, 20% базового масла и около 15% составит мазут.

Эти фракции являются базовыми для получения товарных нефтепродук-тов, ассортимент которых достаточно велик и весьма разнообразен. Отече­ственной промышленностью освоен выпуск свыше 500 наименований нефтепродуктов.

Условно товарные нефтепродукты делятся на светлые, темные, пластичные смазки и нефтехимические продукты. К светлым нефте­продуктам относят и бензины, керосины, топлива для реактивных двигате­лей, дизельные топлива. Темные нефтепродукты — это различные масла и мазуты.

В процессе перегонки составляющие его компоненты отгоняются в порядке возрастания их температур кипения. При определении фракци­онного состава по ГОСТ 2177-82 перегонку ведут до 300°С. При этом от­мечают температуру начала перегонки (н. к.) и объемы дистиллятов при 100, 120, 150, 160°С, а далее через каждые 20°С до 300°С. Обычно бензи­новые фракции выкипают в пределах 35ч205°С, керосиновые - 150ч315°С, дизельные - 180ч420°С, тяжелые масляные дистилляты - 420ч490°С, оста­точные масла - выше 490°С.

Перегонку нефтепродуктов с температурами кипения до 370°С ведут при атмосферном давлении, а с более высокими — в вакууме или с приме­нением водяного пара (для предупреждения их разложения). Кстати, авто­мобильные бензины А-72, А-76, АИ-93 имеют практически один и тот же фракционный состав. Авиационные бензины отличаются повышенным со­держанием легких фракций. Содержание в продукте тех или иных фракции определяется техническими условиями на данный нефтепродукт и зависит от его назначения. Нефти классифицируются по содержанию в них бензи­новых, керосиновых и масляных фракций.

Фракционный состав нефтяных смесей определяется обычно про­стой перегонкой с дефлегмацией или ректификацией, разгонку легких фракций проводят при низких температурах и повышенных давлениях, средних фракций — при атмосферном давлении, тяжелых фракций — в ва­кууме. Для разгонки используют специальные аппараты: Энглера, Богда­нова, Гадаскина, АРН - 2 и др. Фракционный состав легких нефтяных фракций рекомендуется определять также хроматографическим методом, который по сравнению с традиционными ректификационными методами имеет ряд преимуществ: он позволяет наряду с фракционным составом смеси определять индивидуальный углеводородный состав бензиновых фракций, сокращает время анализа, уменьшает величину пробы, повышает надежность метода и дает возможность использовать однотипную аппара­туру.

Отметим, что индивидуальный покомпонентный состав нефтяных смесей определяется методами фракционной разгонки смеси на лабора­торной ректификационной колонке с последующим использованием для анализа узких фракций адсорбционной газожидкостной хроматографии, масс-спектроскопии и прочих современных методов анализа сложных сме­сей.

Выше отмечалось, что фракционный состав определяет количество углеводородов с определенными свойствами. Следовательно, по имею­щимся данным о физико-химических свойствах можно судить о фракци­онном составе. Известно, что наиболее «чувствительна» к изменению углеводородного состава вязкость нефти.

Известно, что физические свойства нефти зависят от преобладания в них отдельных углеводородов или различных их групп. Например, боль­шое содержание в нефти парафинов, смол и асфальтенов повышает ее вяз­кость, особенно при пониженных температурах. В зависимости от состава и ряда свойств производится классификация нефтей, позволяющая выбрать наиболее целесообразный способ транспортировки и хранения.

Парафин при перекачке высокопарафиновых нефтей отлагается на внутренних стенках трубопровода. В магистральных трубопроводах толщина отложений парафина достигает 30 мм. Чтобы предотвратить это явление, при транспортировке нефтей применяют способ горячей перекачки. При этом каждые 25—150 км длины трубопровода нефть дополнительно подогревают. Одним из крупнейших в мире горячих нефтепроводов является трубопровод «Усть-Гурьев-Куйбышев», пере­качивающий высокопарафиновые мангышлакские нефти. Мангышлакские нефти перед закачкой в трубу нагревают до 67-77 °С.

По содержанию серы нефти классифицируются на три класса: малосернистые (до 0,2% серы), сернистые (0,2 - 3,0% серы) и высокосернистые (более 3,0%). Сера в нефти находится в виде сероводорода, меркаптанов и сульфидов до 6%, иногда - в свободном виде. Сера и ее соединения активно взаимодействуют с металлами, также вызывая сильную коррозию. Обнаруживают их по резкому запаху и действию на растворы свинцовых солей. Следует заметить, что содержание серы в нефти ухудшает ее качество, вызывая серьезные осложнения в тех­нологии переработки, подготовки и транспорта нефтей.

Известно, что в пластовых условиях в нефти всегда растворено некоторое количество газа, имеющего в своем составе, кроме углево­дородов, и неуглеводородные газы — азот, углекислый газ и др. Азот, как примесь безвредная и инертная, почти не контролируется анали­зами. Его содержание в нефтях обычно не превышает 1,7%. Углеводо­родных соединений азота довольно много - пиридин, хинолин и т. д.

Газ, который извлекается из недр, принято называть попутным. Газ, выделяющийся в промысловых системах, называют нефтяным газом. Ко­личественно содержание газа в нефти характеризуется так называемым газовым фактором. В зависимости от состава газ подразделяют на сухой (легкий) и жирный (тяжелый). Сухой газ состоит преимущественно из легких угле­водородов метана и этана. В жирном газе содержание фракций пропана, бутана и выше достигают таких величин, что из него можно получать сжиженные газы, газовый бензин или конденсаты. Нефть, содержащую газ, принято называть газонасыщенной нефтью.

Плотность и молекулярная масса.

Плотностью называется количество покоящейся массы в единице объема. Определение плотности нефти и нефтепродуктов весьма облегчает возможные расчеты, связанные с расчетом их массового количества. Учет количества нефти и нефтепродуктов в объемных единицах вызывает некоторые неудобства, т. к. объем жидкости меняется с изменением температуры. Плотность имеет размерность кг/м3. Поэтому, зная объем и плотность, при приеме, отпуске и учете нефти и нефтепродуктов можно выражать их количество в массовых единицах, т. к. масса не зависит от температуры.

На практике часто имеют дело с относительной плотностью неф­ти и нефтепродукта, которая определяется отношением их массы при тем­пературе определения к массе чистой воды при +4°С, взятой в том же объ­ема. Плотность воды при +4°С имеет наибольшее значение и равна 1000 кг/м3. Относительную плотность принято определять при +20°С, что обозначается символом Бот - Относительная плотность нефтей и нефтепро­дуктов при +20°С колеблется в пределах от 0,7 до 1,07.

Удельным весом называется вес единицы объема, т.е. сила притяже­ния к земле единицы объема вещества.

і=Бg (1.4)

где - Б плотность вещества, кг/м; g ускорение силы тяжести.

Существует также понятие относительного удельного веса, чис­ленная величина которого равна численной величине относительной плот­ности. Плотность и удельный вес нефти и нефтепродуктов зависят от тем­пературы. Для пересчета плотности при одной температуре на плот­ность при другой может служить следующая формула

Бi=Б20-ѕ(t-20), (1.5)

где ѕ — поправка на изменение плотности при изменении температу­ры на 1°С; Б20 - плотность нефти или нефтепродукта при t =+20°С.


Вязкость нефтей и нефтепродуктов.

Одной из наиболее характерных особенностей жидкостей является способность изменять свою форму, под действием внешних сил. Это свой­ство жидкости объясняется скольжением ее молекул относительно друг друга. Одна и та же сила создает в разных жидкостях разные скорости пе­ремещения слоев, отстоящих один от другого на одинаковые расстояния. Однако способность молекул к скольжению не бесконечно велика, поэто­му Ньютон рассматривает вязкость как «недостаток скольжения». Обычно вязкостью или внутренним трением называют свойство жидкости сопро­тивляться взаимному перемещению ее частиц, вызываемому действием приложенной к жидкости силы.

Внутреннее трение, характеризуемое величиной ·, немецкий ученый М. Якоб в 1928 году предложил называть динамической вязкостью. В тех­нической литературе за · утвердилось наименование абсолютной вязкости, так как эта величина выражается в абсолютных единицах. Однако в абсо­лютных единицах, можно выражать также и единицы кинематической и удельной вязкости. Термин «динамическая вязкость» соответствует физиче­скому смыслу ·, так как согласно учению о вязкости · входит в уравнение, связывающее силу внутреннего трения с изменением скорости на единицу расстояния, перпендикулярного к плоскости движущейся жидкости.

Впервые же динамическая вязкость была выведена врачом Пуазейлем в 1842 г. при изучении процессов циркуляции крови в кровеносных сосудах. Пуазейль применил для своих опытов очень узкие капилляры (диаметром 0,03-0,14 мм), т.е. он имел дело с потоком жидкости, движение которого было прямолинейно послойным (ламинарным). Вместе с тем исследователи, работавшие до Пуазейля, изучали закономерность истечения жидкости в более широких капиллярах, т.е. имели дело с возникающим турбулентным (вихревым) истечением жидкости. Проведя серию опытов с капиллярами, соединенными с шарообразным резервуаром, через которые под действием сжатого воздуха пропускался некоторый объем жидкости, определенный отметками, сделанными сверху и снизу резервуара, Пуазейль пришел к сле­дующим выводам: 1) количество жидкости, вытекающее в единицу време­ни, пропорционально давлению при условии, что длина трубки превышает некоторый минимум, возрастающий с увеличением радиуса. 2) количество жидкости, вытекающее в единицу времени, обратно пропорционально дли­не трубки и прямо пропорционально четвертой степени радиуса.

Жидкости, подчиняющиеся линейному закону течения Ньютона, на­зываются ньютоновскими, представляют индивидуальные вещества либо молекулярно - дисперсные смеси или растворы, внутреннее трение (вяз­кость) которых при данных температуре и давлении является постоянным физическим свойством. Вязкость не зависит от условий определения и скорости перемещения частиц (течения), если не создается условий для турбулентного движения.

Однако для коллоидных растворов внутреннее трение значительно изменяется при различных условиях потока, в частности при изменении скорости течения. Аномальное внутреннее трение коллоидных систем принято называть структурной вязкостью. В этом случае частицами, ко­торые перемещаются относительно друг друга в потоке, являются не моле­кулы, как в нормальных жидкостях, а коллоидные мицеллы, способные дробиться и деформироваться при увеличении скорости или изменении ус­ловий потока, в результате чего измеряемое внутреннее трение уменьша­ется (либо, наоборот, увеличивается). Большинство жидких нефтепродук­тов не выявляет признаков структурной вязкости в широком температур­ном интервале. Хотя они и представляют собой относительно сложные, ас­социированные жидкости, они не обладают коллоидной структурой, при­знаки которой обнаруживаются для жидких нефтепродуктов .лишь при низких температурах, приближающихся к температурам потери текучести.

В зависимости от температуры, при которой происходит перекачка, одна и та же жидкость может быть и ньютоновской в области высоких температур и неньютоновской в области низких температур. Неньютонов­ские жидкости могут быть разделены на пластичные, псевдопластнчные и дилатантные.

В пластических жидкостях наряду с вязкостью проявляются так же пластические свойства, заключающиеся в наличии некоторого предельного напряжения сдвига Д0, после достижения, которого только и возникает «те­кучесть» среды.

Динамическая и кинематическая вязкости - это вполне определен­ные физические характеристики, которые, как и все другие величины, вы­ражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчет­ная величина, а как практическая характеристика нефтепродукта, ее при­нято выражать не в абсолютных, а в относительных, или условных, едини­цах.

Подобный способ выражения вязкости является результатом непра­вильного представления о том, что определение динамической и кинема­тической вязкостей отличается сложностью, и применения на практике упрощённых технических приборов, дающих показания в условных единицах вязкости. Неудобство всех условных, или относительных, единиц вязкости заключается в том, что вязкость, выраженная в этих единицах, не пред­ставляет собой физической характеристики нефтепродукта, так как она за­висит от способа определения, конструкции прибора и других условий. Из числа относительных обозначений наибольшим распространением пользу­ется так называемая удельная вязкость.

В различных странах в зависимости от выбора стандартных аппара­тов для определения условной вязкости приняты различные условные еди­ницы вязкости. Для пересчета в абсолютные единицы существуют эмпи­рические формулы; однако все эти формулы носят лишь приближенный характер, а некоторые из них просто неточны. Поэтому, если необходимо определить вязкость нефтепродукта в абсолютных единицах, следует оп­ределять ее непосредственно и только в крайних случаях прибегать к пере­счету. Условную вязкость выражают условными единицами: градусами или секундами. Эти единицы обычно представляют собой либо отношение времени истечения определенного объема исследуемого продукта при данной температуре ко времени истечения такого же объема стандартной жидкости при определенно установленной температуре, либо просто время истечения определенного объема испытуемой жидкости.

Как сказано выше, вязкость характеризует свойство данной жидко­сти оказывать сопротивление при перемещении одной части жидкости относительно другой. Такое сопротивление наблюдается как при движении жидкости относительно какого-либо тела, так и при движении какого-либо тела в жидкости. Оба эти случая дают принципиальную возможность из­мерения вязкости различными способами. Наиболее удобным способом измерения вязкости при движении жидкости относительно твердого тела является наблюдение над истечением исследуемых жидкостей из капил­лярных трубок. Для расчета пользуются формулой Пуазейля. Для расчета значений вязкости при движении каких-либо тел в жидкости может быть применен ряд формул, в которых учитываются характер движения и форма движущегося тела. Из этих формул наибольшее значение имеет приводи­мая ниже формула Стокса для расчета вязкости по скорости падения твер­дого шарика в жидкости. Способы измерения вязкости, основанные на ис­течении жидкости из капиллярных трубок, широко распространены. На­против, способы, построенные на принципе движения твердого тела опре­деленной формы в вязкой жидкости, применяются сравнительно редко вследствие того, что даже для тел простейшей формы соответствующие уравнения движения получаются очень сложными. Эти способы находят себе применение преимущественно в тех случаях, когда способы, основан­ные на втором принципе, т.е. на истечении жидкости из капилляров, прак­тически неприменимы вследствие экспериментальных трудностей.

Вязкость нефти изменяется в широких пределах и зависит от ее со­става, количества растворенного газа, примесей в некоторой степени, от давления, температуры, увеличиваясь с ее понижением.

Пересчет вязкости с одной температуры на другую связан с некото­рыми особенностями и на практике иногда сопровождается ошибками. В справочной литературе обычно приводятся сведения о вязкости нефтей при весьма ограниченных условиях и значениях температур. Чаще всего это температуры 20 и 50°С или 50 или 100°С. Нахождение коэффициента крутизны вискограммы позволяет определить вязкость только н интервале за­данных температур. А вот интерполяция результатов вне заданных интерва­лов недопустима, особенно для высоковязких и парафинистых нефтей. С уменьшением температуры ошибка расчетов может составлять 200-300%, а в ряде случаев расчет может быть связан с абсурдным результатом, по­скольку многие нефти теряют текучесть при достаточно высоких темпера­турах 20-25°С.

одятся сведения о вязкости нефтей при весьма ограниченных условиях и значениях температур. Чаще всего это температуры 20 и 50°С или 50 или 100°С. Нахождение коэффициента крутизны вискограммы позволяет определить вязкость только н интервале за­данных температур. А вот интерполяция результатов вне заданных интерва­лов недопустима, особенно для высоковязких и парафинистых нефтей. С уменьшением температуры ошибка расчетов может составлять 200-300%, а в ряде случаев расчет может быть связан с абсурдным результатом, по­скольку многие нефти теряют текучесть при достаточно высоких темпера­турах 20-25°С.

Вязкость нефти и нефтепродуктов в значительной степени влияет на фильтрационную способность их через различные конструкции резервуа­ров. Светлые нефтепродукты (бензины, лигроины и керосины) и легкие фракции нефтей с малой вязкостью при нормальных эксплуатационных условиях (температуре и давлении) обладают высокой степенью просачиваемости через большинство неметаллических строительных материалов. Светлые нефтепродукты просачиваются даже через сварные швы, не про­пускающие воду и другие жидкости; на этом свойстве основано испыта­ние сварных швов керосином. Темные нефтепродукты (котельное топливо, битумы и пр.), смазочные масла и тяжелые нефти, имея более высокую вязкость, обладают малой фильтрационной способностью; иногда высоко­вязкие нефтепродукты своими отложениями уничтожают пористость сте­нок резервуара, делая его непроницаемым. Часто ошибочно полагают, что только вязкость определяет фильтрационное свойство вещества. Например, керосины имеют большую вязкость, чем бензины, однако про­ницаемость керосина через поры металла больше, чем бензинов. Фильтра­ция зависит в значительной степени от поверхностного натяжения, элек­трических свойств жидкости, ее смачивающей способности и пр. Напри­мер, масло фильтруется через замшу, в то время как вода остается поверх ее. Следует отметить, что молекула воды больше молекулы масла; вяз­кость воды также меньше вязкости масла, тем не менее, проникновение его больше воды. Сегодня все еще приходится констатировать недостаточ­ную изученность природы явлений фильтрации нефтей и нефтепродуктов вообще, и влияние на нее вязкости, в частности. От вязкости зависят мощ­ность подогрева устройств, эксплуатационный режим нефтепродуктопроводов, степень извлечения примесей и воды и т.д.

 

 

 

 

 

Телефоны

+3(0412)'46-60-64
+3(0412)'46-49-86
+3(0412)'44-61-79
Киевстар +3(097)'280-34-54
МТС   +3(099)'906-23-74
Life     +3(093)'716-16-10
 Beeline +3(068)'218-12-43

Лабораторное оборудование, дистилляторы, микроскопы, термостаты, центрифуги, анализаторы качества молока Лактан, приборы анализа качества зерновых, строительные лаборатории, приборы анализа качества бетона, оборудование СТО, приборы для проведения технического осмотра автомобилей